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ABSTRACT 
The application of multiobjective optimization is currently receiving growing interest from researchers with 

various backgrounds. Most research in this area has understandably concentrated on the selection stage, due to 

the need to integrate vectorial performance measures with the inherently scalar way in which multi objective 

reward individual performance. In this review, current multiobjective approaches are discussed, ranging from 

the conventional analytical aggregation of the different objectives into a single function to a number of 

population-based approaches and the more recent ranking schemes based on the definition of optimality. The 

sensitivity of different methods to objective scaling and/or possible concavities are considered. From the 

discussion, directions for future research in multiobjective fitness assignment and earch strategies are identified, 

including the incorporation of decision making in the selection procedure, fitness sharing, and adaptive 

representations 
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I. INTRODUCTION 
 

1. Multi-objective optimization algorithms   

Optimization  problems are mainly solved by two methods [1]: analytical  method  and  numerical  method.  The  

analytical  method  involves  strict  mathematical  proofs and derivation, and it can reach exact solution. 

However, the method is also strict with the  problem characteristics, which many realistic problems could not 

match. The numerical method is  designed  with  appropriate  iteration  formulas  and  applied  with  a  series  of  

iterations  to  get  the   approximate  solution.  It  needs  only  defined  decision  variables  and  objective  

variables  feedback  from  optimization  problems.  The  optimization  problem  can  be  a  black-box  problem  

without obvious expressions and it is more suitable for realistic problems. Among the numerical methods [2], 

classical methods like Newton iteration method, simplex method, conjugate direction method, etc. are oriented 

at single objective optimization problems.   

 

 
Fig. 1 .Relationship between the design space and the objective space and solution definition of a two-objective problem 
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These methods have high searching efficiency and fast convergence speed, because they usually  start with a 

given initial point and calculate the  next iteration point according to the descending  information such as 

gradient. However, the methods  have difficulties in solving problems whose gradient  information  cannot  or  

need  too  much  to  be  calculated.  When  applied  for  solving  multimodal  objective  functions,  classical  

numerical methods  are  easy  to  fall  into  and  hard  to  escape from local optimum solutions. Moreover, the 

methods find only one single solution in each  iteration step, and the accuracy of the solution depends mostly on 

the setting of initial values. Intelligent  numerical  methods,  as  one  sort  of  heuristic  search  algorithm,  are  

inspired  by  behaviors,  reactions  and  communication  mechanisms  in  nature.  Thus  developed  optimization 

algorithms  are  broadly  divided  into  four  categories [3]  as  shown  in  Fig.2:  Biology  inspired  algorithms,  

Physics  inspired  algorithms,  Geography  inspired  algorithms,  and  Social  culture inspired algorithms.   

 

 
Fig.2. Classification of Intelligent Optimization Algorithms 

 

Biology inspired algorithms  

Biology inspired algorithms are inspired from biological activities in both micro and macro world (such as 

evolution behaviors), or from substantial development and structural features [4].  They  are  generally  divided  

into  two  types:  evolution  based  algorithms  and  swarm  based  algorithms [5]. (i) Evolution based algorithms 

Evolution  based  algorithms,  also  known  as  Evolutionary  Algorithms  (EA)  are  stochastic  search methods 

that mimic the survival of the fittest process of natural ecosystems. The algorithms  have  strong  adaptability  

and  self-organization,  including  Evolutionary  Programming  (EP)  [6],  Evolutionary Strategy (ES) [7], 

Genetic Algorithm (GA), Differential Evolution Algorithm (DE),  Harmony Search Algorithm (HS), Membrane 

Computing (P system), etc. [8]. The development process of classical genetic algorithms and differential 

evolution algorithms are respectively demonstrated in Table 1 and Table 2.   
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Moreover, Jia et al. [9] added chaos neighborhood searching mechanism to DE to improve  its search ability in 

the early search stage and exploration ability in the later search stage. Liu etal. [10] combined DE with PSO to 

form a hybrid algorithm, which improved the performance and accelerated  the  searching  efficiency.  The  

hybrid  algorithm  worked  especially  well  for  solving constrained optimization problems. Membrane 

computing [11],  also known as a P system,  is non-deterministic and distributed parallel computing device, 

which is abstracted fromthe structure and functioning of living cells,  as well as from the interactions of living 

cells in tissues or neuros. It was initiated  by P˘aun in   1998, with the first paper published in 2000 [12].  The 

structure is consisted of several cell-like membranes,  placed  inside  a  solo  skin  membrane.  Multisets  of  

objects  are  placed  in  the  regions  delimited  by  hierarchical  or  more  general  arrangements  of  membranes,  

as  shown  in  Fig.3.  The  evolution  processes  of  each  object  are  done  in  a  parallel  manner.  At  last,  the  

evolved  result  is  output from the skin membrane to the environment. There are mainly three types of P 

systems: cell-like P systems; tissue-like P systems and neural-like P systems [13].   

 

 
Fig.3. A Membrane Structure 
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It has been proved that any Turing computable problems can be solved by P systems. The P  system  has  

already  applications  in  computer  graphics,  computer  science,  cryptography,  mathematics, abstract 

chemistry, biology, ecology, artificial intelligence, approximate optimization,  and even linguistics, etc. HS was 

originally developed by Geem [14] for discrete-variable problems and then expanded to  continuous-variable  

problems.  It  mimics  musician’s  behaviors  such  as  random  play,  memory-based  play  and  pitch  adjusted  

play  to  get  a  perfect  state  of  harmony.  Wang  et  al.  [15]  proposed  a  differential  harmony  search  (DHS)  

algorithm,  combining  the  mechanisms  of  differential  evolution  with  harmony  search.  The  DHS enhances  

the  exploration  ability  of  the  algorithm.  (ii) Swarm based algorithms In a broadly defined way, swarm based 

algorithms are included in evolution based algorithms.  Swarm  based  algorithms  are  inspired  from  social  

nature  and  model  the  collective  behavior  of  populations, such as honey bees, ant colonies, and  bird flocks, 

etc. Among these agents (swarm individuals), they cooperate with each other to search for food, necessary for 

their survival, and  also  keep  safe  from  other  agents.  Swarm  based  algorithms  are  consisted  of  Particle  

Swarm  Optimization Algorithm (PSO), Artificial Bee ColonyAlgorithm (ABC) [16], Artificial Immune  

System  (AIS),  Teaching-Learning  Based  Optimization  algorithm  (TLBO),  Ant  Colony  Optimization 

Algorithm (ACO) [17], Cuckoo Search algorithm (CS), Firefly Algorithm (FA) [18],  Bacteria  Foraging  

Optimization  algorithm  (BFO)  [19],  Coral  Reef Optimization  algorithm (CROA) [20], Shuffled Frog 

Leaping Algorithm (SFLA)[21], Pigeon Inspired Optimization (PIO) [22], etc.   In 1987, Christopher initially 

proposed the conceptof Artificial Life, which meant the system that mimic the behavior characteristics in the 

nature life system, by the way of computers or other  non-biological media [23, 24]. The above mentioned  

evolution-based algorithms are inspired by Darwinian  evolution  whereas  the  swarm  intelligence  is  

generated  by  imitating  the  behaviors  of  social swarms [25]. Swarm intelligence [26] meant the intelligent 

behaviors presented by simple behaviors of individuals in the population without  central control. These 

individuals behaved to solve the foraging, searching and visiting, transportation and transmission problems. 

Based on the  swarm intelligence, swarm-based algorithms were then produced.  

 

(a) Particle Swarm Optimization (PSO)  

In 1995, Kennedy and Eberhart [27] proposed thePSO algorithm, whose central idea was  information sharing 

mechanism. The PSO has been widely used in various fields to solve different  kinds  of  optimization  

problems.  Many  variants  of  the  PSO  algorithm  have  been  proposed  to  maintain or strengthen the 

diversity, so as to escape from local optima or premature convergence.  Li et al. [28] combined PSO with 

NSGA-II and the experiment results showed that the combined  method  had  better  performance  than  NSGA-

II.  Coello  Coello  et  al.  [29]  proposed  the  multi-objective PSO (MOPSO), which incorporated external 

population with adaptive grids.   

 

(b) Teaching-learning based optimization (TLBO)   

The  TLBO  algorithm  was  first  proposed  by  Rao  et  al. [30].  There  are  two  phases  in  the TLBO: teacher 

phase and learner phase. Learners learn from the teacher in the teacher phase and  from each other in the learner 

phase. The teacher is considered as the best solution in the entire  population  obtained  thus  far.  In  order  to  

get  the  global  optimal  solutions,  a  modified  TLBO   

 

algorithm was proposed by Hosseinpour et al. [31], which added a mutation process similar to that of DE. 

Niknam et al. [32] proposed a modified TLBO algorithm with two mutation operations and two  crossover  

operations  added,  so  as  to  enhance  the  local  and  global  search  abilities  of  the algorithm. TLBO also 

shows good performance in solving large scale optimization problems with little computational efforts [33].  

 

(c) Artificial Immune System (AIS)   

The  AIS  is  inspired  from  immunology  and  acts  as  an  adaptive  system  that  mimics  the function,  

principles  and  model  of  immunology  to  solve  complicated  problems  [34].  It  has  been  successfully 

applied in fields of anomaly detection, computer security, data mining, optimization,  etc. In Table 3 illustrated 

are developments of AIS. Wherein, the NNIA is especially advantageous  in solving many-objective 

optimization problems with more than three optimization objectives. Compared to classical numerical methods, 

broadly defined evolution based algorithms is one  sort  of  probability  search  algorithm  based  on  population.  

These  algorithms  need  neither  extra  initial  points  nor  gradient  information  of  objective  functions.  

Therefore,  they  are  suitable  for  optimization problems that cannot be solved by classical numerical methods. 

Moreover, evolution  based  algorithms  have  characteristics  of  parallelism  and  distribution,  appropriate  for  

solving  large-scale/ high-dimensional optimization problems.    
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Physics inspired algorithms   

Physics  inspired  algorithms  for  optimization  problems  are  also  heuristic  algorithms.  They imitate the 

physical behaviors and properties of the matters or follow the same philosophy as the  laws  of  physics.  The  

common  physics  inspired  algorithms  include  Chaotic  Optimization  Algorithm  (COA),  Intelligent  Water  

Drops  Algorithm  (IWD)  [35],  Magnetic  Optimization  Algorithm (MOA) [36], Gravitational Search 

Algorithm (GSA) [37], Simulated Annealing (SA)  [38], etc.   

 

(a) Chaotic Optimization Algorithm (COA)  

The  random  search  technique  was  introduced  by  Hamzacebi  and  Kutay  [39],  which  was  adaptable to 

different optimization problems and the simplest heuristic algorithms. As introduced by Vela´squez Henao [40], 

the use of chaotic sequences instead of quasi-random numbers seemed to be a more powerful strategy for 

improving many traditional heuristic algorithms, because the chaotic  sequences  have  characteristics  of  

ergodicity,  randomness,  and  regularity.  An  essential feature  of  chaotic  systems  is  that  small  changes  in 

the  parameters  or  the  initial  values  lead  to  vastly different future behaviors [41].   The  chaos  optimization  

algorithm  (COA)  was  first  proposed  in  1997  by  Li  et  al.  [42],  in which  the  Logistic  map  was  

introduced  to  produce  chaos  variables  as  optimization  variables.  Besides Logistic map, other mapping 

methods were also incorporated in the COA, such as Tent map  [43].The  COA  was  also  combined  with  other  

algorithms  to  form  hybrid  chaos  optimization methods [44].    

 

Geography inspired algorithms    

Geography inspired algorithms are one sort of metaheuristic algorithm and generate random solutions in the 

geographical search space. These optimization algorithms are classified as Tabu  Search Algorithm (TS), 

Imperialistic Competition Algorithm (ICA), etc.   

 

(a) Imperialistic Competition Algorithm (ICA)   

The ICA is inspired by imperialism, which is the policy of extending power and signifies the  role  of  a  

government  [45].  The  number  of  colonies  determines  the  power  of  an  imperialist. Strengthening the 

authority of an imperialist makesother imperialists weaker.  (b) Tabu Search Algorithm (TS) Tabu  search  

algorithm  was  first  suggested  by  Glover [46]  in  1986,  which  was  a  meta-heuristic search method based 

on local search.It explores all feasible solutions in the search space by a sequence of moves. Especially, a set of  

moves are forbidden at each iteration step to escape from local minima [47].  

 

Social culture inspired algorithms   

Social culture inspired algorithms are inspired by  the social, economic and cultural systems etc. that incorporate 

the cultural evolution theoryinto optimization algorithms.  As  shown  in  Table  4,  there  are  some  classical  

developments  of  social  culture  inspired  algorithms.   In  1989,  Moscato  firstly  proposed  the  Memetic  

Algorithm,  which  used  the  local  heuristic search to imitate the mutation process backed up bylarge amount of 

professional knowledge. The  Granular Computing mimics the human thoughts from different levels of 

granules. It is based on  the  space  partition  of  problem  concepts,  able  to  effectively  analyze  and  deal  with  

problems  of fuzziness, non-accuracy, non-consistency and partial true values.     
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In  summary,  Fig.4  demonstrates  the  overall  development  process  of  common  intelligent optimization 

algorithms. At the same time, description of advantages and disadvantages of some classical intelligent 

optimization algorithms are listed in Table 5.    

 

 
Fig.4. Development process of common intelligent optimization algorithms 
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Zhou et al. [48] surveyed the development of MOEAs (multi-objective EAs) in detail. In the  paper  covered  

included  algorithmic  frameworks  and  applications  such  as  MOEAs  with  specific  search  methods,  

MOEAs  for  multimodal  problems,  constraint  handling  in  or  with  MOEAs,  computationally  expensive  

multi-objective  optimization  problems  (MOPs),  dynamic  MOPs,  combinatorial and discrete MOPs, and etc. 

There wasalso a summary of the major applications of  MOEAs in solving real-world problems. Rodrigues et al. 

[49], Cambero et al. [50], Chaouachi [51], H.A. et al. [52],and Fadaee et al. [53]  reviewed  the  application  of  

intelligent  algorithms  (especially  EAs)  in  the  multi-objective optimization  of  economic,  energy,  

environment,  or  technical  issues  in  the  fields  of  wind  farm, forest biomass supply chains, micro-grid, 

distribution generation systems, and hybrid renewable energy systems. They found out that intelligent 

algorithms were utilized effectively able to find global optima.  

 

The PSO algorithm was one of the most popular intelligent algorithms that were applied for solving  multi-

objective  optimization  problems  considering  energy,  economics  and  environment issues  in  processes  that  
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produced  or  consumed  energy  [54].  As  renewable  energy  resources  are clean and environment-friendly, 

they are paid enormous attention in recent years. PSO [55] or its improved variants like MOPSO [56], 

AMOPSO [57], BB-MOPSO [58], and LAPSO [59] etc. were tested efficient in energy optimization 

applications.  Meanwhile, GA, with most accepted and applied variants (including VEGA, MOGA, SPEA, 

SPEA2,  NSGA,  NSGA-II,  PESA,  PESA-II,  NPGA,  NPGA2,  etc.)  were  also  used  or  improved  varying  

with  concrete  multi-objective  optimization  problems,  like  building  energy  optimization [60, 61], 

distribution transformer optimal design[62], complex industrial processes [63, 64],  or processes integrated 

renewable resources [65].    

 

II. MULTI-OBJECTIVE  OPTIMIZATION  TEST  FUNCTIONS  AND 

PERFORMANCE  EVALUATION  INDEXES 

 
1. Multi-objective optimization test functions   

As it is hard to evaluate the performance parameters of intelligent algorithms theoretically,  researchers 

generally use test functions to verify  the algorithm performances. Zitzler et al. [66]  constructed  a  set  of  test  

problems  called  ZDT  test  function  set,  which  was  consisted  of  six  problems  ZDT1~ZDT6. These  

problems  are  two-objective  optimization  problems  with  different  forms  of  expression  and  properties.  

Because  their  Pareto  fronts  are  known,  they  are  one  of  the  most common used test problems. Therein, 

ZDT1 and ZDT4 are convex functions while ZDT2  and  ZDT6  are  concave  functions,  ZDT3  is  a  non-

continuous  function,  ZDT4  is  a  multi-modal function, and ZDT5 is a function with deceptive property. Deb 

et al. [67] constructed a set called DTLZ testfunction set, which allowed the decision  variables and objective 

functions to extend to any dimension. The DTLZ test function set includes seven  unconstrained  optimization  

problems  DTLZ1~DTLZ7  and  two  constrained  optimization problems DTLZ8~DTLZ9. They are also 

widely used fortesting the performance of optimization  algorithms.  Deb  et  al.  [68]  also  constructed  a  set of  

constrained  multi-objective  optimization problems (called DEB) with different Pareto optimalboundaries. 

Huband et al. [69] defined a set  of  WFG  test  problems,  and  constructed  a  scalable  toolkit  of  test  

problems.  Li  and  Zhang  [70] proposed a set of continuous test problems whose variables were correlative and 

the Pareto front surface was with arbitrary complexity, which was able to reflect the complexity in the real-

world multi-objective  optimization  problems.  There  are  also  some  other  common  test  problems  like 

Schaffer’s study (SCH) [71], Fonseca and Fleming’sstudy (FON) [72], Kursawe’s study (KUR) [73], etc.  

 

2. Multi-objective optimization performance evaluation indexes   

The solutions found by the multi-objective optimization algorithms are a set of approximate Pareto optimal 

solutions and we need to evaluate this set of approximate solutions. The evaluation indexes usually involve the 

following three indexes:  

(1) Convergence: the solutions that are most approximate to the Pareto optimal solutions are the best.   

(2) Uniformity: the good solutions should be distributed uniformly along the Pareto optimal frontier.  

(3) Distribution: the final solutions should cover the whole Pareto optimal frontier as much as possible.   

(4) Multi-objective Optimization Trade-off Methods :In  order  to  get  a  trade-off  solution  for  

multiple, conflicting,  and  non-commensurate objectives, more and more researches have been doneon 

from classical optimization algorithms to intelligent optimization algorithms.  In the past, the earliest 

and direct method for dealing with multi-objective problems was to transfer them into single objective 

problems, and then  used classical optimization  algorithms to solve  the  problems.  In  applying  this  

method,  we  need  decide  the  importance  degree  of  each objective, which is previously determined 

using a priori method (like Weighted Sum Method) or determined  during  the  search  process  using  

the  interactive  method  (like  Boundary  Intersection Method). As  shown  in Fig.5,  there  is  a  

summarized  demonstration  of  trade-off  methods  for  solving multi-objective optimization problems.  
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Fig. 5.Classification of multi-objective trade-off optimization methods 

 

3. Interactive methods   

In  order  to  actively  exploit  the  decision  makers’  knowledge  and  experiences,  interactive  methods were 

developed, such as the interactive weighted Tchebycheff method [74], the Light Beam Search [75] and the 

NIMBUS method [76, 77]. The interactive methods incorporate preferences of decision makers for each 

objective during the optimization process. As usual, interactive methods implement an achievement 

scalarization function (ASF) to generate Pareto optimal alternatives. There are two widely-applied interactive 

methods for dealing with multi-objective decision problems:  Normal  Boundary  Intersection  (NBI)  and  

Normalized  Normal  Constraint  (NNC) methods.  They  are  relatively  new  scalarization  methods  compared  

with  the  WSM,  which reformulate  the  multi-objective  optimization  problem  into  a  parametric  single  

objective optimization problem. In 1998, Das and Dennis [78] proposed the NBI method, which tackled the 

multi-objective problems  from  a  geometrically  intuitive  viewpoint.  The  method  first  builds  the  convex  

hull  of individual minima (CHIM) and then constructs (quasi-)normal lines to the plane. The rationale lies in 

that the intersection between the (quasi-)normalfrom any point on the CHIM, and the boundary of the feasible 

objective space closest to the origin is expected to be the Pareto optimal. The NBI method is able to form a near-

uniform spread of the Pareto-optimal frontier, making the  NBI  a  more  attractive  approach  to  the  Weighted  

Sum  Method  in  solving  non-convex, high-dimensional multi-objective problems. Ganesan et al. [79] used the 

NBI interactive method to compromise the multiple optimized objectives  in  the  synthesis  gas  production  

process  of  combined  carbon  dioxide  reforming  and partial-oxidation of methane technologies. In 

conjunction with the NBI method, the GSA and the PSO  algorithms  were  adopted  to  realize  the  process  

optimization  of  objectives  of  methane conversion,  carbon  monoxide  selectivity  and  the  hydrogen  to  

carbon  monoxide  ratio.  The optimization results of these two algorithms were compared using the Euclidean 

distance metric.  
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The PSO algorithm outperformed the GSA method in terms of uniformity of the Pareto front and computational 

efficiency.  In  2003,  Messac  et  al.  [80]  proposed  the  NNC  method,  which  was  similar  as  the  NBI 

method  but  combined  with  features  of  the  ε-constraint  method.  The  ε-constraint  method minimizes  the  

most  important  objective  function s,  while  the  other  objectives  are  added  as inequality  constraints  with  

the  form   E ≤ E.  Based  on  this  idea,  in  the  NNC  method,  a  plane called the utopia hyperplane is 

constructed throughall normalized individual minima, and equally  distributed  points  in  this  hyperplane  are  

determined  by  consistently  varying  the  weights. Then m-1 hyperplanes are constructed for other objective 

functions. These hyperplanes are chosen  perpendicular  to  each  of  the  m-1  utopia  plane  vectors,  which  

join  the  individual  minimum corresponding  to  the  selected  objective   s.  Furthermore,  there  is  an  

Enhanced  Normalized Normal Constraint method (ENNC) proposed in Ref. [81]. Logist  et  al.  [82]  

incorporated  the  NBI  and  NNC  methods  in  a  deterministic  multiple shooting optimal control to mitigate 

the drawbacks  of the Weighted Sum Method. The combined  interactive method was able to obtain an equal 

distribution along the non-convex Pareto front. It can deal with equality/inequality constraints and boundary 

value problems, with tight tolerances for  global  and  local  optimality.  The  resulting  optimization  method  is  

successfully  used  in  the design of a chemical reactor and the control of a bioreactor. The  integration  of  

optimization  techniques  with  these  interactive  methods  were  efficiently  used  to  tackle  non-convex  

optimal  control  problems  [83]  and  applied  to  different  engineering fields [145].  

 

However,  NBI  and  (E)NNC  may  overlook  the  extreme  parts  of  the  Pareto  set.  Therefore, Vallerio et al. 

[84] introduced an Interactive Geometric Extension (IGE) technique to extend the Pareto set for NBI and 

(E)NNC methods based on geometric considerations. Then the extended NBI or (E)NNC methods were applied 

successfully to  three scalar multi-objective problems and the multi-objective optimal control of a tubular and a 

fed-batch reactor. The results demonstrated the low computational burden and applicability to higher than three 

dimensional problems of the proposed methods. Moreover, Vallerio et al. [85] presented an interactive 

framework based on NBI and ENNC to realize the nonlinear dynamic multi-objective optimization. By the 

active use of Pareto Browser Graphical User Interface (GUI), decision makers expressed their preferences via 

the browsing of scalarization parameters such as  weights. The parameters were adapted interactively. Finally, 

the introduced  interactive  framework  for  multi-objective  dynamic  optimization  was  successfully tested for 

a three and five-objective fed-batch reactor case study with uncertain feed temperature and heat transfer 

parameters. Most interactive methods for multi-objective optimization problems may impair at least one 

objective function to get a solution. Hence, Miettinen et al. [86] proposed a NAUTILUS method based  on  the  

assumptions  that  past  experiences  affected  decision  makers’  hopes  and  decision makers  did  not  react  

symmetrically  to  losses  and  gains.  The  ability  of  NAUTILUS  to  obtain  a non-anchored Pareto optimal 

solution made it an ideal tool to find an initial solution for any other interactive schemes. In  order  to  deal  with  

the  objectives  impairment  problem,  Bortz  et  al.  [87]  integrated  an algorithm based on a state-of-the-art 

steady-state  flow sheet simulator for designing a distillation process for the separation of an azeotropic mixture. 

Firstly, a minimal Pareto set with predefined accuracy  was  calculated  by  the  sandwich  approximation  

method,  which  can  handle non-convexities. Then the decision makers navigatedinteractively on the Pareto set 

and explored  different optimal solutions by the CHEMASIM tool.  

 

III. CONCLUSION 
In  this  paper,  the  description  of  multi-objective  optimization  problems  and  solutions definition  is  given  

in  summary.  Due  to  the  complexity,  orthodox  and  mostly  nonlinearity  of multi-objective optimization 

problem, intelligent optimization algorithms like evolution based and  swarm  based  algorithms  were  proposed  

and  has  been  improved  continuously  for  solving  the  problem  with  good  performance.  We  also  give  a  

brief introduction  of  some  most  often  used  intelligent optimization algorithms about their development 

processes and (dis)advantages. Some existing test problems consisted of mathematical functions are also 

demonstrated and the relative performance indexes for verifying the effectivenessof multi-objective 

optimization methods are  summarized. In  order  to  get  a  final  optimal  solution  for  specific  multi-objective  

problems,  trade-off optimization methods including a prior methods, interactive methods, Pareto-based methods 

and new  dominance  methods  were  proposed  and  improved. 
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